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Abstract-Equations are derived which describe the free damped vibrations of plates and shells
made of laminated fiber-reinforced. organic-matrix composites. A finite element method is
developed for obtaining solutions to these equations. A computer code is written. which can be
uscd to calculate the natural frequencies. mode shapes. and damping factors of rl'Ctangular plates.
cylinders. and cylindrical panels with free. clamped. or simply supported edges. and with or without
circular cutouts. Natural frequencies and mode shapes calculated by the code lor isotropic and
composite plates. cylinders. and cylindrical panels are compared with previous analytical. numerical.
amI e~pcnmenlal results. The results of the present study agree closely with those reported by
previous investigators.

I. INTRODUCTION

In recent years. many analyses have been proposed for calculating the vibrational charac­
teristics of plates and shells made of liber-reinforced composites. Most of the previous
analyses were concerned with the problem of free undamped vibration, and most were
formulated using the KircholT- Love assumption thereby neglecting transverse shear defor­
mation. Damping has been included by Alam and Asnani (1986). Lin ('1 al. (1984), and Ni
and Adams (1984) in their analyses of free vibrations of composite plates and beams. and
by Alam and Asnani (1984a, b, 1(87) in their unalysis of free vibrations ofcircular cylinders
made either of alternating layers of dillercnt isotropic muterials or a specially orthotropic
material. The dTects of transverse shcar strains have generally been considered only with
relerence to frce vibrations of composite plates (Alam and Asnani. 1986, 1987; Lin ('1 al.,
1984: Reddy, 1984; Phan and Reddy. 1985: Noor. 1972; Srinivas ,Illd Rao. 1970). with the
apparent exception of Alam and Asnani's aforementioned study of a specially orthotropic
cylinder.

Thus. the free vibration analyses ofcomposite plates seem to be well in hand. However,
corresponding analyses for shells, taking into account the elfects of both damping and
transverse shear strains. arc not yet av'lilable. Therefore, the Ilrst objective of this inves­
tigation was to develop the equations describing the problem of free damped vibrations of
composite shells. without introducing the Kirchoff-Love assumption. These results arc
presented in this paper. The second objective was to study the free damped vibrations of
composite plates and shells containing circular cutouts. These results will be described in a
forthcoming paper (Bicos and Springer. 1989).

2. PROBLEM STATEMENT

We consider a shell with principal radii of curvature R I and Rz and thickness" (Fig.
I). The thickness" is small in comparison with thc othcr dimensions of the shell. There are
no forces or constntints applied on the upper or lower surfaces of the shell. Each outer edge
of the shell may be clamped. simply supported. or free.

The shell is madc of a laminated composite consisting of layers of unidirectional,
continuous fibers embedded in an organic matrix. The layers are perfectly bonded. The
shell may be made entirely of composite or of two composite face sheets enclosing a core,
but the cross section must be symmetric with respect to the midsurface of the shell.
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Fig. I. D.:script!on of th.: shdl.

Thl: ohjectivl: is to develop the equations whidl descrihe thl: free damped vihration of
the shL'l1. ami ean he used to cakulate the natural fn:queneies. mode shapes. and damping
1";letors.

.1. (iOVFRNIN(, EQUATIONS

In this section. lhe equations applicahle to a general shell (Fig. I) are presented in
whieh: (a) the thickness Ii of the shell is small eompared to all the other dimensions of the
shell; (b) the thickness It is constant; (e) the material from whieh the shell is construeted
is layered symmetrieally with rcspeet to the midsllrfaee of the shell; and (d) each layer of
the shL'l1 is either isotropie or orthotropie. The equations are developed on the basis of the
following assumptions:

(I) the material from which the shell is constrlleted hehaves in a linearly elastic manner:
(2) the material exhibits light damping. i.e. any vibration of the material dies out in an

amount of time that is large in comparison to the period of vibration;
(3) damping of the material is independent of the frequeney of the vihration (this

assumption. although generally invalid for an isotropic metal. is often justifkd for fiher­
reinforced organic matrix composites) :

(4) the shell vibrations arc simple harmonic motions:
(5) the clrects of gravity on the vibration of the shell arc negligible.

It is further assumed that the transverse normal stress (T:: at any point is much smaller
than any of the other stresses at that point and is. therefore. negligible. The component of
the displacement normal to the shell midsurface ("out-of-plane" component with magnitude
II d is assumed to be constant through the thickness. The displacement components per­
pendicular to the norma! component ofdisplacement ("in-plane" components) arc assumed
to vary through the thickness such that transverse shear strains arc nonzero. The latter
assumption implies that the Kirchhoff Love assumption (Naghdi. 1963). that normals to
the midsurface before deformation remain normal and straight after deformation. is not
assumed in the present analysis.

After the governing equations h~lve heen derived we utilize a flnite clement method to
generate numerical values of the natural frequencies. mode shapes. and damping factors.
Because the resulting finite element formulation of the problem is very large. and because
we arc interested only in the flrst few eigenvalues and eigenvectors. the problem is attacked
in two steps. In the first step. the undamped natural frequencies and the corresponding
undamped mode shapes of the shell arc obtained. For lightly damped structures. such as
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XI ,. constant

Fig. 2. Delinition of the coordinate system ;lnd midsurface hase vectors. For an orthogonal
lines-{lf-curvature coordinate system. n = 90'. and the coordinate lines (x' = constant and

x: = constant) arc identical to the lilies of curvature.
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those considered in this study. the undamped n.llural frequencies and mode shapes arc
nearly the same as the damped natural frequencies and mode shapes. In the second step.
the damping corresponding to each mode of vibration. as expressed in terms of a modal
damping fador. is cakulated.

3.1. (i/'lJlllctrinl! ClJll.vic!cf(/tilJlIS

In developing the governing equations we employed a general coordinate system shown
in Fig. 2. The various components of vectors and tensors in this coordinate system can be
found in texts. such as Naghdi (1963), and arc not given hcre in detail. Only those aspects
of the coordinate system arc described which are needed in the subsequent analysis. A
coordinate (Xl •.\.~.=) attached to the shell midsurl~lce is used. The base vectors {a,.a~.ad·.

assm:iated with the coordinate system shown in Fig. 2. satisfy the following conditions
(Naghdi. 1963. 19X4)

a = r> ,>

a 'a = 0.I.> .I

( I )

(2)

where /j~ tS the Kronecker delta. The metric eoefTIcients of the shell midsurface arc
given by

(3)

Here. and in what follows, bold face type indicates a vector. a comma denotes partial
differentiation. and subscripts (X and II take on the values of I and 2. The vector r is the
position vector of any point on the shell midsurface.

The position vector R of an arbitrary point B inside the shell is related to the position
vector r of a corresponding point A on the shell midsurface by (Fig. 3)

(4)

Any first. second. third. or fourth rank tensor evaluated at point B inside the shell can
be expressed in terms of the components with respect to the base vectors {a,.a~.a3} at point
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Fig. J. Ddinilill1l (,I' the l.!ispl'lWlm;nt veehn I:\lmponcnt:> with resped t\l the shdl midsurfa.:c,

A nn the Illidsurface. The ltlllowing expressions relate tbc components of a t"nsor wi th
fespcl.:t to the midsurfacc hase vectors (Naghdi, 19S4):

(5)

(7)

(8)

whcre ® is the knsor produl"t symbol and

h~ an: the codlicicnts of the curvature tensor. The terms in brackets on the right-hand side
of cqns (5) (8) arc rdi:rrcd to as the LOctlicicnts of the tensor at point B and the terms in
bradets on the Ic.:fl-halld side of these cqu.ttions arc reft.::rn:d to as the codlkicnts of the
tensor with respect to the midsurfal.:e base vectors at point A.

For the orthogonallinc:d)f-curvature coordinUle system. the curvature coellkicnts arc
(Naghdi. 1%3)

h~ = bf = h~ = O. ( 10)

Regarding the notation used in eqns (I )-(9), the following comments are made. In
these equations. as well as in all subsequent analysis. subscripts denote covariant tensor
coefTtcicnts and superscripts denote contravariant tensor cocl1icicnts (Fluggc. 1972).
Furthermore. all Greek indices (subscripts i.lI1d superscripts) take on the values of 1
and 2. Lastly. summation is implied whenever a subscript and superscript have the same
index in an cxpn:s"ion.
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3.2. Kinematics
The analysis which follows is along the lines presented by Reddy (1984) for composite

plates. For the coordinate system shown in Fig. 2 and discussed above. the coefficients of
the strain tensor at any point in the shell are (Naghdi. 1963)

(11)

(12)

( 13)

where II denotes covariant differentiation with respect to base vectors {a\. a~. aJ}. Ii, are the
coefficients of the displacement vector components tangential to the surface at point B.
These components. called intrinsic components. are in the plane tangent to the surface at
point B (Fig. 3). ii, is the coefficient of the "out-of-plane" or normal component of the
displacement vector at point B. called the extrinsic component of the displacement. and is
normal to the plane tangent to the surface at point B.

The coefficients of the tangential or intrinsic components of the displacement vector
are assumed to vary with position through the thickness according to the expression

(14)

The coelftcient of the normal or extrinsic component of the displacement vector is assumed
to be constant through the thidness

ii.l = w. (15)

/'" 11'. It,. cp,. and ljI, arc as yet undetermined displacement measures. These measures arc
functions of position r and time "

The expression for the tangential displacement coellicients Ii, can be simplified by
making use of the fact that the transverse shear stresses arc zero on the load·free upper and
I(lwer surfaces of the shell (Reddy. I9H4)

h
: = ± "). (16)

For shells construcled of isotropic or orthotropic layers. when the transverse shear
slresses arc zero on the ouler surf'lces. the transverse shear strains arc also zero on these
surl~lces (Reddy. 1994)

": = ±~. (17)

By substituting eqns (14) and (15) into eqn (12) and making usc ofcqn (17). we obtain

(18)

(19)

For a plate the curvature coelftcicnts b~ arc zero and hence eqns (18) and (19)
reduce to

4,I. = _ --- ... (p + \1' )
1'. 3h~ 1 ••

€P. = 0,

(20)

(21 )
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Tabl.: 1. Ddinitions of th.: strain m.:asures

h'
" \ = _ _-h·,I.

I 2 . J~

0,\ = -"2b;1jt

Equations (20) and (21) are the same as those derived by Reddy (1984) for a plate,
Sy substituting eqn (19) into eqn (14) we obtain

(12)

where ,~, are given by eqn (18).
In the following analysis, we will use eqn (22) to represent the coefficients of the

tangential or intrinsic components of the displacement. This is in contrast to the often used
method. where only a linear variation through the thickness is used to describe ii, (Naghdi.
19~4)

ii, = I', +::!f,. (23 )

In our discussions we will refer to results obtained from eqn (22) as being of the
"higher-order" theory and to results obtained from eqn (23) as being of the "standard"
theory.

The codlicients of the strain tensor can now be expressed in terms of the unknown
displacement measures 1',. II'. If, and t{J,. ny substituting eqns (15) and (22) into eqns
(II) (I) we obtain

{'II = 0 (26)

where the tensor codlicients expressed in terms of the Greek letters represent the strain
measures defined in Table I. The four strain measures in the left-hand column com:spond
to the tangential or "in-planc" strains. The four strain mcasures in the right-hand column
corrcspond to the transversc shear strains.

Three of the strain measures in Table I (i"/I' 10.:,/1' and ,',.1) are the same as those that
would bc obtained using eqn (23) ("standard" theory (Naghdi. 1984». The remaining lIvc
strain mcasurcs ().,/I. V,/I. 10.:". l". and V,.1) are due to thc quadratic and cubic tcrms in cqn
(22). Finally. for a plate in which thc curvature eoeflicients h~ arc zero. the equations in
Table I reduce to the expression obtained by Reddy for a plate (Reddy. 1984).

3.3. em/stitlllil'i' relatiolls
The shell is made of isotropic or orthotropic layers (called plies or laminae). The

properties of each layer arc taken to be symmetric about the layer's midsurface (monoclinic
material). The constitutive relations applicable to each layer arc (Naghdi. 1963)

(J'.1 = C.1.1;·"c;.;+C
,

·II' C.l'

(27)

(28)

(29)
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Table 2. Definitions of the stress resultants

I3S

Il is defined by eqn (36).

where (I'P, (I'}, and (TB denote the coefficients of the stress tensor at any point, and C·jJ""
C'.';}, C·/In, C.'.';", and C H }} are the coefficients of the elastic stiffness tensor (moduli
tensor).

As stated previously, the transverse normal coefficient of stress a JJ is assumed to be
negligihle. Accordingly, egns (27)-(29) hecome

(30)

where Q ,/1;·,1 and Q,1,1 arc the coellicients of the reduced stitfness tensor, dctincd as

(31 )

For orthotropic materials, the physical coellicients of the reduced stilrness tensor, in terms
or the engineering constants, are given in Bicos (1987).

The aforementioncd equations apply to a single ply or layer. For a laminate composed
of se\eral layers, the stress strain relations can conveniently be expressed in terms of the
stress resultants defined in Table 2.

By combining the aforementioned equations we obtain the constitutive relations for
the laminate given in Table 3. For a plate. where the curvatures arc zero, uB'II"" I B'/I,'\

Table 3. Laminate constitutive relatiuns

Jv·jf ;=: uLl,jJ"'j·,..,+ ,lrp/·iK,.,t+ ~B'JJ'i'\;~?,,+ )8'11""0..,)

Af'll", ,8'11"')'i;+ ,8'11'.',,:,;+ .1 fl ,'J",A.,'., + .O·P'·'O"

{.'P = ,fl'II...,.,." + ,O·lli"",'., + .fl·P'··'i....., + ,fl'P"'Il",

p'P '" ,1/"""')'.., + .8·P'·'''i'' + ,0'/1''''',l,. + .0·P'··'Il,.

Q.l = oS,Iylj'i 1 + t8~Jril(;d + ],BsiyJA.yl + lB1(h10;1

R,l ~ ,ntlt li'_,,, + :,B' 111A",J + )/I'I\'I
3).'1J + ..B" II '0., ,

51' = :.Bf I;. 11'/ 1 + Ill' 17 111:;d + 4!J,1y l)'7 1 + ..8,·1;"0"

'r' '" ,H·1i "I' + .fl'" '''' 1+ ,H··
I" i.." + .0""'11"

where

.8'p..." '" fh·zQ··';··(JI-')~(JI-I)~P;"d=. n=0.1 6

.fl·'" '" r:, Q'·'·'(JI-I);(JI-I)~II;"d=. n == 0.1 6

and Q.,.... and Q""" are the coefficients of the reduced stiffness tensor
with respt.'Ct to the midsurfacc and (p-l)~ is the inverse of pe.
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Fig. 4. Illustration of an edge clement and edge traction.

and ~B'~;'" become the in-plane, in-plane/bending coupling, and bending stiffness tensors,
respectively. These tensors are identical to the ,.1,/1"", B'~;"\ and D'~"'; tensors used in
eonventionallaminate plate theory (Tsai and Hahn, 1980; Jones, 1975).

In Tables 2 and 3, Nt/I, Ar/I , and Q" arc the tangential or membrane stress resultants,
moment resultants, and transverse shear stress resultants, respectively. These three result­
ants arc identical to those of the "st..mdard" theory, in which the tangential coellicients of
the displacement Ii, arc assumed to vary linearly through the thickness (c4n (23». The
additional resultant tensors given in Table 2 do not appear in the "standard" theory; thcy
arise here due to the higher-order terms in our approximation for ii, (eqn (22».

3.4. EquatiollS oj'motioll
The equations of motion arc derived using the extended Hamilton's prim:ipk

(Meirovitch, 19(7), For the shell under consideration, the extemlcd Hamilton's principle
takes the form of

where ij is the variation symbol. and t I and t z arc two instants of time. T is the kinetic
energy density

(33)

where p is the material density and dots indicate dillcrentiation with respect to time. {' is
the strain energy density

V is the volume of the shell and d V is a volume clement

dV = It d= dA,

where It is the determinant of Jt~ given by

It = 1-2:fl+:zK.

f{ is the mean curvature and K the Gaussian curvature or the midsurface

(34)

(35)

(36)

(37)
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dA, is a midsurface area element. A" is the edge area on which the applied stresses are
specified. and dA" is an element along this edge (Fig. 4)

(38)

where de" is the corresponding midsurface edge line element, vfJ the components of the unit
normal vector at a point off the midsurface. and vfJ the components of this unit normal
vector with respect to the midsurface. a*,11 anda* JfJ are the stress components corresponding
to the specified edge tractions.

By combining eqns (15)-(38) together with those in Tables 1-3. after very lengthy but
straightforward calculations (Bicos. 1987). we obtain the equations that describe the motion
of the shell. The resulting equations are listed in Table 4 for orthogonallines-of-curvature
coordinates (Fig. 2). The first four equations apply at every point in the midsurface. The
boundary conditions apply to points along the edge of the midsurface.

The displacement measures r/J I and the stress resultant tensors e fJ• pxll. RIJ, S,J. and
pJ appeming in the equations of motion are the result of the higher-order approximation
employed here. i.e. they result from the quadratic and cubic terms included in the expression
for the displacement iiI (eqn (22», By setting r/J. equal to zero in eqn (22). the equations of
motion become identical to those that would be obtained if the "standard" approximation
for iiI (eqn (23» were used.

The boundary conditions in Table 4 express the conditions that must be satisfied along
the edge of the shell. These relations show that along an edge the following conditions must
be specified:

Tahlc 4, hluations (If motion and hllundary conditions

Ortlwgonallines-of-curvature coordinate system (Fig. 2).

HI/llllli"'H or ",oli"n

-/1I11'+",#N'h +<!u: '., ()

- [/,i" +I,lf, + (J,/~' "; + lii}"',]II'p + .\f;~ - Q" '" 0

-l(I, /~' l,fla" +1,11'#}" +(I \J~' I~a" + 1,11'#)1[,

(
},' : ,.. },'. ", P ',' , .. ) " ] },' ", p.

+ "16",h!.a +1, 4 (",11 +".<1 )+1.11 lfI i, + '4'H,L;t>+P p

II' hi'R" _ 3(,,'1 _ h~ "'H') ')" _'hi'T" '" 0
~ ~ l 11'" - J •

1I00111dary I'II/Idilimls

VIi-VIP = f:.N·.,!1 or "",. '" 0
,lOti

V,j~l" = ",Af··P or (5(lp =0

and

v.,Q"t1 = \'"Q_I1 or " ... '" 0

and

where v, ;Ire the components or the edge unit normal. and

f·'~f. "" ,.,/'/I="d:. n =O. I..... 6.
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Fig. 5. mU~lratiun of the terms lIsed in the ddinitiun nf the damping fac!<'L

(I) cithcr thc mcmbrane stress resultants or the membranc displacemcllts. ami
(2) either the moment resultants or the rotations. and
0) either the transverse shear stress resultants or the norma! displacement, and
(4) either the higher-order resultants or the higher-order displacement measures;

these resultants (/:11 and 1"11) anti the displacement nH:asures If!. have no ready physical
interpreta tioll.

Solutions to the equations in Table 4 can bc obtaincd by nunH.:rical methods. These
solutions provide the displacements at every point on the midsllfl~lCe. Once the dis­
placements of the lllidsurl~tee arc known, the disp!acemt;nts at any point in tht; shell can be
determined by eqns (15) and (22), The numerkal method used for obtaining solutions to
the free vihration prohlem is discussed in Section 4.

3.5. f)wIIl'inq
The damping associated with a given mode of vibration of the shell ischaracteri/ed

by a nllldal damping factor 'I (also called the loss factor) delined as (Lazan, 196X)

ilUIll,"

'[ -- 2rrU rn ,l\ '
(39)

Here I[ is a measure of the str.tin energy dissipated per radian of vibration in the mode of
interest, urn", the total strain energy of the entire laminate at maximum displacement during
one cyde of vibration in the mode of interest, and L\Un"u the strain energy dissipated in
that mOth: of vihration during the same cycle (Fig. 5), Proceeding in a manner similar to
Lin ct at. (19X4), for a 1:1minate consisting of N plies, we can write

.'i

um.n ::::: '" (Jm;"
L. "

n= I

(40)

where U::',l\ is the strain energy of the nth ply at the maximum displacement during one
cycle of vibration in the mode of interest. Similarly, the strain energy dissipated by the
laminate during the same cyde of vibration in the mode of interest is
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.V

J1 Vma. = L J1lJ-:,a.
~=l
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(.t I)

where de::a
, is the strain energy dissipated by the nth ply during this cycle of vibration in

the mode of interest. With reference to egn (34). the strain energy for an orthotropic ply.
in terms of the ply coordinates. is

where Qu. Q..... Qtr. Q,,:. Qx:. and Q.. are the components of the reduced stiffness matrix
(Jones. 1975). ('y. e,. ex... ex:. and e,,: the strain components (physical coefficients of the
strain tensor). and V~ the ply volume. The coordinates x and yare in the directions pamllel
and transverse to the fibers in the plane of the ply. and =is in the direction normal to the
plane of the ply. The subscript ss represents shear. From eqn (42). the maximum str<tin
energy during one cycle of ..-ibmtion can be written us

"v:;n = (U l +V z+ V; + V~+ V 5 + Vf,):;'''' = L(Vi):;'''''
t~ I

The loss of strain energy of Ihe 11th orlhotwpic ply is written as (sec eqn (43»

(43)

"i.\U~'·" = (AV, +AV!+AU\+AV~+l\V5+AVf,):~;"= L (AV,)~l;". (44).* ,
E;u.:h of the six terms in eqn (44) represents the change in the strain energy associatetl with
U1 through Ue. during one cycle.

Analogolls to eqn (39). for the 11th ply a damping factor is now defined for eaeh of the
six strain energy terms

(
Avma

.)
('I,)" = "--V···tm". ' i = 1.2•...• 6.

_'It I ff

(45)

U;".t\ is the strain energy at maximum displacement and J1Vra
• the corresponding stmin

energy dissipated during the ensuing one cycle of vibration.
By combining eqns (39)-(45) we obtain for each vibration mode of interest the modal

damping factor for the laminate

,v 6

L L ('1,( V,)~nat
n- f i- I

'1 =-;-,--'-:-f,---

L L (Vi);:''''
,,~l ,* I

(46)

For cuch mode of vibration. the strains needed to c.!Icul.tte the strain energies arc
given by the free vibration solution of the equations of motion described in the previous
subsection. The damping factors 'Ii must be measured experimentally.

4. METHOD OF SOLUTION

A finite clement procedure was developed to obtain solutions to the equations described
III the previous section. In the finite clement formulation 4-node bilinear quadrilateral



I~ A. S. BlCos and G. S. SPRI:"GER

elements were used. For these elements we may use seven degrees of freedom per nOlk
corresponding to the seven displacement measun:s (1"[. l":. #1.13:.1/11' and 1/1: in eqn (22)
and II' in eqn (16»), or we may use live degrees of freedom per node corresponding to the
five displacement measures (l" I. 1":. {J [. and fJ: in eqn (23) and II in eqn ( 16».

We developed an algorithm for obtaining numerical results for problems involving
plates. cylindrical shdls. and cylindrical pands. with or without circular cutouts. In this
algorithm the entries in the ekment stillness and mass matrices are evaluated by Gaussian
integration schemes (Hughes. 1987). Two such schemes were built into the algorithm: the
four-point (2x 2) Gaussian integration scheme. and the one-point Gaussian integration
scheme. To minimize errors in plates (caused by shear locking!. the entries in the ekment
stitlness matrix associated with transverse shear stitTnesses were' evaluated using the one­
point Gaussian integration scheme. To minimize errors in the shells (caused by shear and
membram: locking), the entries in the element stiffness matrix associated with transver,e
shear and membrane stitTnesses were evaluated using the one-point integration s\.·heme
(seketive reduced integration (S R I) or B-method (H ughes. 11.)87). For further details of the
finite element formulation the reader is referred to Bieos (1 %7).

We developed a computer code (designated as "VIBRR") to implement the algorithm
described above. This code can be used to caleuIate the natural frequencies. mode shapes.
and damping factors ofcomposite plates. cylinders. and cylindrical panels with and without
circular cut()uts. Thc code was written in Fortran-77. and may he ohtained from thc authors.
A "user-friendly" input interface allow, the complete input data lile to he generated in a
few (5 10) minutes. Depending on the sile of the problem (i.e. the numher of elements used
and the number of modes required on a VAX II/7XO) the CPU time ranges from a few
minutes for small problem (10 elements. 5 modes) to I h for a large problem (400 elements.
15 modes).

5. Vl-:RII·IC:\TION (>1" TilE MOD!:!.

The model. the algorithm. and the computer code developed during the course of this
study must he verified. This verification was e1kcted by comparing the results of the
present method to existing analytical. numerical. and experimental results pertaining to free
vibration of isotropic or composite plates and cylindrical shells with or without cutouts.
The problems included in our verilication studies were groupcd into three major categories:

(I) isotropic material: free undamped vibration:
(2) composite material: free undamped vibration:
(3) composite material: free damped vibration.

Problems related to the free /llIdlill/fled vihration of isotropic and composite materials
arc examined below. The free damfled vibration of composite plates and shells will be
discussed in a forthcoming paper (Biens and Springer. 19H9). The results presented were
computed with live degrees of freedom per mode. usin!,! the material properties in Tahle 5.
Materials I and 2 !,!iven in this table arc fietitious orthotropic materials. Following the
accepted custom. in the frequency vs mode numher plots. the natural frequencies caleulated
at discrete modes are connected hy eontinuous lines.

5.1. Isotropic material: free II/ldamped I'ihratio/l
The free undamped vibration of isotropic plates and shells containing no cutouts has

been widely investigated (Leissa. 1969. 1(73). Here we chose three problems against which
to compare our results. namely. the free undamped vibration of a plate. a cylinder. and a
cylindrical panel.

The first prohlcm examined was an aluminum plate with free ed!,!es (Fig. 6). The first
four natural frequencies calculated by the present method arc compared with the results of
the classical thin plate theory (Iguchi. 1953). There is excellent agreement between the
numerical results of the present method and the analytical results of the classical plate
theory.



Tablc: 5. Malerial properlies used in Ihe cakulalions

Malerial Malerial IIT-SjDX210 AVCO 5505 E-glass-
Properly Symbol Unils Aluminum 510:.:1 "Aragonile" I 2 graphile-epm~y boron-epoxy epoxy

Longitudinal modulus E, msit 9.9 26 21 10 10 16.3 30 2.11l!
Transverse modulus E, msi II 0.4 0.25 1.14 2.7 1l.74
Longitudinal shear modulus C,. msi 6.1 0.2 0.15 0.649 0.65 1l.27
Transverse shear modulus G,: msi 3.7 0.2 0.15 0.649 0.65 0.27
Transverse shear modulus Go: msi 6.2 0.0l! 0.125 0.43l! 1.05 0.10
Longitudinal Poisson's ralio \', - 0.3 0.3 0.4-t 0.25 0.25 0.3 0.2l! (1.35
Density p 10 . ) Ib S1 in. - • 0.254 0.729 1000 10000 10000 0.143 0.193 0.129
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Fig. 6. Natur.l1 frequencies of a free square aluminum pl'lte. Comparis<lII of the results <'I' the presenl
method with the classical plate theory solution of Iguchi t 195.'l.

The second prol1lel1l studied was an aluminulll cylinder d~lmped at one end (Fig. 7).
We compared the natural frequencies calculated by our method with the analytical results
of Resnick and Dugundji (1%6). The frequencies calculated l1y the two mcthod\are within
51~. or each other.

The third prol1lel1l considcrcd Was a sted cylindrical pand with the straight edges frce
and with the curved edges simply supported (Fig. 8). The natural frequencies calculated by
the present method agree with rhe cxperimenhtl data of Heki, as quoted by Leissa (1973).

Just as for the problem of plates and shdls containing no cutouts, then: is a considerabh:
alllount of information on the free unJamped vibration of isotfllpit: plates and shells
containing cutouts (Leissa, 1969, 1973). In many of the previous reports I:ither the results
were not given in sullicient detail to be useful in comparisons, or the cutouts were
rectangular (Brogan ('I al., 1969; Aksu and Ali, 1976; Ali and Atwal, 19XO; Joga-Rao
and Pickett, 1961). We found two previous results that could readily be compared with
our method. These wen: the data of Takahashi (1958) and Toda and Komatsu (1977).

Takahashi measured the fundamental frequencies of aluminum plates containing
circular cutouts varying in diameter from 0 to 3.6 in. (Fig. 9). Comparisons l1etween the
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Fig. 7. Natural frcquencies of ;lfl aluminum cylinder cl;tmped along vne edge and free along Ihe
other edge. Comparison of the results of the present method with the analYlk:d results "I' Resnick

and Dugundji (r '.l66l.
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Fig. 8. Natural frequcncies of a steel cylindrical panel free (F) along the straight edges and simply
supported (SS) along the curved edges. ComlXlrison of the prescnt method for undampt."d vibration

with the data of Heki (Leissa. 1973).

present method and Takahashi's data show good agreement. especially at smaller cutout
si,es (Ria < 0.1). Even at larger cutout sizes the model agrees with the data within 4%.

Toda and Komatsu measured the natural frequencies of aluminum cylinders c1.tmped
along one edge. Each cylinder cont.tined two circular cutouts located at mid-length on
opposite sides of the cylinder (Fig. 10). The data ofToda and Komatsu arc compared with
the results of the present method in Fig. to. The numerical results of the present method
agree with the data extremely well for the first four modes. The agreement is slightly less
for mode 5. but the numerical results arc still within about 6% of the data.

5.2. Composite material: fret' ul/damped vihratiol/
The problem of free undamped vibration of composite plates and shells has been

studied widely. mostly by .tnalytical means. For solid plates (i.e. no cutouts) we compared

o
o 0.1 0.2

CUTOUT SIZE, ria

Fig. 9. Fundamental frequency as a function of cutout size of a rectangular aluminum plate with
its edges c1ampt.,,<!. Comparison of the present method for undamped vibration with the data of

Takahashi (1958).
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n:sults of our model wilh thl: rl:slilts of thl: thin platl: thl:ory of Rl:ddy (19X4) and Phan and
Rl:ddy (P)X5), wilh thl: rl:stills of thl: Ihrl:l:-diml:nsional tlwory of e1asti~ity as presented by
Noor (1972) and by Srinivas and Rao (1970). and with thl: analyti~al rl:sults and data of
Cawky and Adams (197X). hll' platt:s with ~utouts WI: ~lll11parl:d our results with those of
Prabhakaran and Rajal11ani (197X). For ~ylinlkrs WI: (';ol11pared the results of our model
with the numerical results of Sheinman and Grid' (19X4).

First, we examined two [0/901, orthotropic clllnpositl: platl:s with their edges simply
suppOrll:d (Figs II and 12). Thl: fundaml:ntal freq uencil:s of thl:se plates were ealculatl:d
as a function of the modulus ratio (£,//:',) hy the present method, and were compared with:

(I) the results of thl: classical thin platl: thl:ory (phan and Reddy, 1985):
(2) the nUllll:rical results of Phan and Reddy (19X5);
(3) the three-dimensillnalthl:ory of elasticity given hy NOM ([972).

The fundamental frequen(.;il:s givl:n hy the classi~.t1 plate thl:ory arc evidently in error (Fig.
II). The fundamental frequencies calculatt:d hy the prl:sent llll:thod, by the numerical
procedure of Phan and Reddy, and by the three-dil11l:nsional elasticity results of Noor agree
very closely over a widl: rangl: of the modulus ratio (Fig. 12).

Note that the results of Phan and Reddy wac hased on a "higher-order" theory using
seven degrees of freedom pI:!" nodI:. The pn:sl:nt results eomputl:d using only live degrees
of freedom per node ("standard" theory) agrel: very closely with the seven degrees of
freedom "higher-order" theory of Phan and Reddy.

Second, we considen:d a square [0/45/-45/90], orthotropic composite plate with its
edges clamped (Fig. 13), and calculated the fundamental frequencies as a function of the
plate's length to thickness r'ltio. The fundamental frequencies obtained by the present
method were compared with the numerical results of Phan and Reddy (1985). It is note­
worthy that the "standard" theory (five degrees of freedom per node) results agree very
closely with the results of the "higher-order" theory (seven degrees of freedom per node),
especially when the plate is "thin" (say LIIl > 40). This is expected since one of the
assumptions in our analysis is that the thick ness 11 is small (';olllpan.:d to the other dimensions.
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We studied a single layer orthotropic aragonite plate with its edges simply supported
(Fig. 14). The natural frequencies calculated by the present method were comp,tred with
the natural frequencies given by the three-dimensional theory ofcl.tsticity solution presented
by Srinivas and Rao (1970) and by the classical plate theory solution of Phan and Reddy
(19H5). The natural frequencies obtained by the present method again agree well with the

100

PHAN a REDDY (1 DOf)

]·0 I!USTIClY
(NOOR)

Fig. 12. Fundamental frequency of a simply supported square composite plate. Results were
calculated by the present model using five degrees of freedom per node. Comparison of the present
results with the numerical results of Phan and Reddy (1985) and the analytical results of Noor

(1972). Material properties given in Table 5.
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results of Ihe Ihree-ditlll:nsional elasticity approach hut an: in disagreement with the results
of the classical plate theory.

Two additional composite square plates were analyzed. with [(45/45):), and
[0/60: JONOj, Iayups. The natural frequencies of these plates calculated hy the present
method were compared with the analytical results and data of Cawley and Adams (197X).
There is excelknt agreement hetween the results of the present method and the: ("Ita of
Cawley and Adams Wig. 15).
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Fig. t4. Nalural frequencies of a square aragonite plate with simply supported edges. Comparison
of the results of the present method with the three·dimensional elasticity n:sults ofSrinivas and R.1O
t 1970} and the dassieal plate theory results of Reddy (t9l\4). Material properties given in Table 5.
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(197M). Material properties given in Taole 5.

Free undamped vibration of plates with cutouts has been investigated by Lee c[ al.
(19X7) and by Pmbhakarun and Rajamani (197!'\). The analysis of Lee ('( al. (19S7) applies
to plates with rectangular cutouts. hence their results could not be compared with ours.
Prabhakaran and Raj'llnani calculaled the natuml frelJucncies of clamped unidirectional
composite plates containing a circular cutout. We compared the results of the present

-a...
800

--PRESENT MODEL

--PR.ABHAICAR£N .t.
RASAMANl

600 1-_--=::::::---

400

2

200
MODE t

0
0 0.1 0.4 0.6

CUTOUT SIZE. DIL
Fig. 16. Natural frequencies as a function ofcutout size ofa unidirectional E-glass-epoxy plate with
its edges clamped. Comparison of the results of the present method with the analytical results of

Prabhakaran and Rajamani (1978). Material properties given in Table 5.
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Fig. 17. Fundamental frequencies of two horon-epoxy cylinders made of unidirectional [Od and
cross-ply ['10 0.'10] laminates. The edges of the cylinders are either clamped (CC) or simply supported
(55). Comparison of the results of the present method with the numerical results of Sheinman and

Greif (19li4). Material properties given in Tahle 5.

method with those given by Prabhakaran and Rajamani for a 9 in. square. 0.094 in. thick
damped plate made of undirectional E-glass-epo:\y (Fig. 16). The natural frequencies
calculated by the present method agree well with those of Prabhakaran and Rajamani.

In addition to composite plates. we also applied the model to the problem of free
undamped vibration of a eomposite cylinder made of three boron-epoxy plies, arranged as
either rOd or [90,"O/90j. The edges of the cylinder were either damped (CC) or simply
supported (SS). The fundamental frequencies cakulated by the present method and by
Shcinman and Gricf(19X4). are within 1'1.. (Fig. 17).

6. ("ON("UJ[)IN(j Rl'.l'\lt\RKS

The equations presented in this paper describe the free damped vibrational charac­
teristics of laminated fiber-reinforced composite plates and shells. The "VIBRW' computer
code applies to rectangular plates. cylinders. and cylindrical panels. which may contain one
or two symmetrically located circular cutouts. However. by using the equations developed
in this study. the code could readily be e:\tended to other shell geometries.

We note that the computer code C,1I1 be used to analyze both the free damped and
undamped vibration of nat and cylindrical panels made of fiber-reinforced organic matrix
composites. The code should not be applied to the free damped vibration of such panels
made of an isotropic material because the ,lssumption used in the analysis. that damping
is independent of frequency. generally is invalid for isotropic materials. Since this assump­
tion does not affect the results for free undamped vibration, the code m,ly also be used to
study the free undamped vibration of rectangular plates. cylinders. and cylindrical panels
made of an isotropic material or alternating layers of isotropic and composite materials.
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